Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Viruses ; 14(8)2022 08 08.
Article in English | MEDLINE | ID: covidwho-1979412

ABSTRACT

This study described a SARS-CoV-2 infection in minks on an Italian farm. Surveillance was performed based on clinical examination and a collection of 1879 swabs and 74 sera from dead and live animals. The farm was placed under surveillance for 4.5 months, from the end of July 2020, when a man working on the farm tested positive by RT-PCR, till mid-December 2020 when all the animals were sacrificed. Clinical examination revealed no clinical signs or increased mortality rates attributable to SARS-CoV-2, while diagnostic tests detected only four weak PCR-positive samples, but 100% of sera were positive for SARS-CoV-2 anti-S antibodies. The phylogenetic analysis of two SARS-CoV-2 sequences from two minks and the sequence of the worker showed that they belonged to different clades. It could be therefore assumed that two distinct introductions of the virus occurred on the farm, and that the first introduction probably occurred before the start of the surveillance period. From the data collected, and especially from the detection of specific antibodies through the combination of different tests, it can be postulated that syndromic surveillance combined with genome detection by PCR may not be sufficient to achieve a diagnosis in asymptomatic animals. In particular, the serological approach, especially when using tests directed towards the S protein, may be useful for improving the traceability of virus circulation in similar environments.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Viral , COVID-19/diagnosis , COVID-19/veterinary , COVID-19 Testing , Farms , Humans , Mink , Phylogeny , SARS-CoV-2/genetics
2.
Emerg Infect Dis ; 27(7): 1981-1984, 2021.
Article in English | MEDLINE | ID: covidwho-1225855

ABSTRACT

We detected severe acute respiratory syndrome coronavirus 2 in an otherwise healthy poodle living with 4 family members who had coronavirus disease. We observed antibodies in serum samples taken from the dog, indicating seroconversion. Full-length genome sequencing showed that the canine and human viruses were identical, suggesting human-to-animal transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Dogs , Humans , Italy/epidemiology
3.
Viruses ; 12(12)2020 12 20.
Article in English | MEDLINE | ID: covidwho-1073490

ABSTRACT

Due to their need for living cells, viruses have developed adaptive evolutionary strategies to survive and perpetuate in reservoir hosts that play a crucial role in the ecology of emerging pathogens. Pathogenic and potentially pandemic betacoronaviruses arose in humans in 2002 (SARS-CoV, disappeared in July 2003), 2012 (MERS-CoV, still circulating in Middle East areas), and 2019 (SARS-CoV-2, causing the current global pandemic). As universally recognized, bats host ancestors of the above-mentioned zoonotic viruses. However, hedgehogs have been recently identified in Europe and Asia as possible reservoirs of MERS-CoV-like strains classified as Erinaceus coronavirus (EriCoV). To elucidate the evolution and genetics of EriCoVs, NGS (next generation sequencing) and Sanger sequencing were used to examine fecal samples collected in Northern Italy in 2018/2019 from 12 hedgehogs previously found EriCoV-positive by RT-PCR. By sequence analysis, eight complete EriCoV genomes, obtained by NGS, showed a high phylogenetic correlation with EriCoV strains previously reported in Eurasia. Interestingly, eight viral strains presented an additional ORF encoding for the CD200 ortholog located between the genes encoding for the Spike and the ORF3a proteins. The CD200 ortholog sequences were closely similar to the host CD200 protein but varying among EriCoVs. The result, confirmed by Sanger sequencing, demonstrates for the first time that CoVs can acquire host genes potentially involved in the immune-modulatory cascade and possibly enabling the virus to escape the host defence.


Subject(s)
Coronavirus Infections/virology , Coronavirus/classification , Coronavirus/genetics , Hedgehogs/virology , Animals , Base Composition , Betacoronavirus/classification , Betacoronavirus/genetics , COVID-19/virology , Chiroptera/virology , Evolution, Molecular , Genome, Viral , Middle East Respiratory Syndrome Coronavirus/genetics , Pandemics , Phylogeny , SARS-CoV-2/genetics , Sequence Alignment , Sequence Analysis , Spike Glycoprotein, Coronavirus/genetics
4.
Viruses ; 12(12):1471, 2020.
Article in English | ScienceDirect | ID: covidwho-984255

ABSTRACT

Due to their need for living cells, viruses have developed adaptive evolutionary strategies to survive and perpetuate in reservoir hosts that play a crucial role in the ecology of emerging pathogens. Pathogenic and potentially pandemic betacoronaviruses arose in humans in 2002 (SARS-CoV, disappeared in July 2003), 2012 (MERS-CoV, still circulating in Middle East areas), and 2019 (SARS-CoV-2, causing the current global pandemic). As universally recognized, bats host ancestors of the above-mentioned zoonotic viruses. However, hedgehogs have been recently identified in Europe and Asia as possible reservoirs of MERS-CoV-like strains classified as Erinaceus coronavirus (EriCoV). To elucidate the evolution and genetics of EriCoVs, NGS (next generation sequencing) and Sanger sequencing were used to examine fecal samples collected in Northern Italy in 2018/2019 from 12 hedgehogs previously found EriCoV-positive by RT-PCR. By sequence analysis, eight complete EriCoV genomes, obtained by NGS, showed a high phylogenetic correlation with EriCoV strains previously reported in Eurasia. Interestingly, eight viral strains presented an additional ORF encoding for the CD200 ortholog located between the genes encoding for the Spike and the ORF3a proteins. The CD200 ortholog sequences were closely similar to the host CD200 protein but varying among EriCoVs. The result, confirmed by Sanger sequencing, demonstrates for the first time that CoVs can acquire host genes potentially involved in the immune-modulatory cascade and possibly enabling the virus to escape the host defence.

SELECTION OF CITATIONS
SEARCH DETAIL